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Abstract
Laser beam powder bed fusion (LB-PBF) is a widely-used metal additive manufacturing process due to its high potential for
fabrication flexibility and quality. Its process and performance optimization are key to improving product quality and promote
further adoption ofLB-PBF. In this article, the state-of-the-artmachine learning (ML) applications for process and performance
optimization in LB-PBF are reviewed. In these applications, ML is used to model the process-structure–property relationships
in a data-driven way and optimize process parameters for high-quality fabrication. We review these applications in terms of
their modeled relationships by ML (e.g., process—structure, process—property, or structure—property) and categorize the
ML algorithms into interpretable ML, conventional ML, and deep ML according to interpretability and accuracy. This way
may be particularly useful for practitioners as a comprehensive reference for selecting the ML algorithms according to
the particular needs. It is observed that of the three types of ML above, conventional ML has been applied in process and
performance optimization themost due to its balanced performance in terms ofmodel accuracy and interpretability. To explore
the power of ML in discovering new knowledge and insights, interpretation with additional steps is often needed for complex
models arising from conventional ML and deep ML, such as model-agnostic methods or sensitivity analysis. In the future,
enhancing the interpretability of ML, standardizing a systemic procedure for ML, and developing a collaborative platform to
share data and findings will be critical to promote the integration of ML in LB-PBF applications on a large scale.

Keywords Machine learning · Laser beam powder bed fusion · Process and performance optimization · Process-
structure–property relationships · Prediction accuracy · Interpretability

Introduction

Additive manufacturing as a viable production
alternative

Additive manufacturing (AM), which fabricates complex
geometrical 3D objects using layer-wise material deposi-
tion directly from digital solid models, is transforming from
rapid prototyping to a revolutionary digital manufacturing
technology for functional and structural applications (Ever-
ton et al., 2016a; Ford &Despeisse, 2016; Guo & Leu, 2013;
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Rao et al., 2015a). Comparedwith traditionalmanufacturing,
AM is superior in design flexibility, product customization,
low-volume timely production, and cost and lead-time reduc-
tion, constituting a viable production alternative for future
manufacturing (DeVor et al., 2012; Ford & Despeisse, 2016;
Ghobadian et al., 2020; Guo & Leu, 2013).

In the recent decade (2010 ~ 2020), AM technology has
been adopted in a variety of industries, such as aerospace,
defense, and biomedical. The steep growth projected for the
global AM market implies an optimistic prospect of AM
to revitalize manufacturing. In 2020, the global AM mar-
ket value was estimated to be $12 Billion and is expected to
grow to $78Billion by 2028 (Global AdditiveManufacturing
Market & Technology Forecast 2020).

To secure AM technology as a viable production alter-
native, a great amount of research effort has been devoted
to understanding the process-structure–property (PSP) rela-
tionships (Fatemi et al., 2019; Liu et al., 2019; Masoomi
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et al., 2018; Shrestha et al., 2019; Soltani-Tehrani et al.,
2020; Yadollahi et al., 2017) in AM processes and con-
tinuously improving product quality (Smith et al., 2016).
Applying computational methods, such as simulation and
ML, has also been gaining increased attention, especially in
the ongoing global process of developing infrastructure with
artificial intelligence for future intelligent manufacturing
(“Strategy for American Leadership in Advanced Manufac-
turing”, 2018).

Machine learning to improve advanced
manufacturing

In the same decade, artificial intelligence (AI) is also expe-
riencing an explosive advancement in both research and
applications due to the exponential development in com-
puting infrastructure and ever-increasing data availability.
Technological breakthroughs in AI enable intelligent sys-
tems to take on increasingly sophisticated tasks and augment
human capabilities in new and profound ways. They are
improving and reconstructing every aspect of human life,
such as finance, communication, and e-commerce (Jordan,
2019; Russell & Norvig, 2003; Tegmark, 2017).

Machine learning (ML), a subset of AI, is widely used for
data analysis and decision-making in this data-rich era. It can
quickly recognize data patterns from historical data (which
could have been neglected by humans), extract insights, and
establish data-driven predictivemodels with high accuracy to
facilitate decision-making (Bishop, 2006; Goodfellow et al.,
2016;Molnar, 2020; Zhang&Ma, 2012). Depending on their
functionality, three commonly used ML paradigms include
supervised learning, unsupervised learning, and reinforce-
ment learning (Bishop, 2006). Supervised learning aims
to learn the relationships between predictors and response
(or the target variable) in the data mainly via regression
(with continuous response) and classification (with discrete
response); unsupervised learning groups data into different
clusters only based on predictors themselves; reinforcement
learning explores the optimal solutions in an environment
with feedback to maximize the cumulative reward.

AI and ML are gaining increasing attention from the
manufacturing community, both in academia and industry.
Manufacturing has become the next industry where AI and
ML aim to upgrade and reconstruct ("Recommendations
for Strengthening American Leadership in Industries of the
Future", 2000; Lee et al., 2018; Li et al., 2017). It is foresee-
able that new and innovative partnerships with industry and
academia will entail an effective transition and translation
of ML research outcomes into manufacturing applications at
scale.

Fig. 1 Total number of research articles and review articles in metal-
based AM with ML during 2011–2020 in ScienceDirect (search
keywords: ML, metal, AM, 3D printing). It can be seen that in 2020,
there are 483 published metal-based AM studies with ML, about 6% of
all publications in metal-based AM

Machine learning in additive manufacturing

ML has gained increasing attention in AM research as a way
to build surrogates with various sensor data and measure-
ments for the PSP relationships. It has been demonstrated
to be a convenient way to perform complex pattern recog-
nition and data-driven analysis without an explicit need to
construct and solve the underlying physical models (Bishop,
2006; Breiman et al., 1984; Drucker et al., 1996; Freedman,
2009; Ho, 1995; Tibshirani, 1996). For instance, two ML
paradigms—supervised learning and unsupervised learn-
ing—are widely used in different AM applications, such as
product design, parameter optimization, process monitoring,
and quality control (Goh et al., 2021; Meng et al., 2020; Qi
et al., 2019; Razvi et al., 2019; Wang et al., 2020).

Since 2011, the progress of integrating ML into AM
research has been accelerating. In ScienceDirect, the number
of publications (i.e., research articles and review articles) of
metal-based AM studies with ML applications has increased
from 0 to 483within the 10 years, as in Fig. 1. The percentage
of metal-based AM studies with ML increases rapidly in the
recent 3 years and has reached ~ 6% of all the metal-based
AM publications in 2020. (Search keywords: ML, metal,
AM, 3D printing).

The integration of ML into AM studies also follows the
corresponding evolution ofML algorithms. Only linearmod-
els (Freedman, 2009; Tibshirani, 1996) are used to quantify
the linear relationships among important process variables in
AMwith experimental data at the early stage. Later, conven-
tional “shallow”MLmethods (Breiman et al., 1984;Cortes&
Vapnik, 1995; Ho, 1995) are adopted to model the nonlinear
relationships among process variables and make predictions
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on target variables. Simulation is further applied to aug-
ment the experimental training data and improve the training
efficiency of ML models. Recently, deep learning models
(Bengio et al., 2013; Goodfellow et al., 2016) are adopted to
automate feature extraction and achieve even higher predic-
tion accuracy.

With the growth of ML applications in AM studies, sev-
eral review papers have been published in the last 2 years
to organize the state-of-the-art studies from different per-
spectives. To the authors’ knowledge, the earliest review
work was presented by Razvi et al. (2019) in ASME 2019
International Design Engineering Technical Conferences
& Computers and Information in Engineering Conference
(IDETC/CIE2019). This paper introduced the newest ML
applications in AM along its product lifecycle (including
design, process plan, build, post-process, and test and valida-
tion). Later, Qi et al. (2019) focused on the current progress
of applying neural network (NN) algorithms to AM studies
in design for AM (DfAM), in situ monitoring, and quality
evaluation.

In 2020, Wang et al. (2020) highlighted the state-of-
the-art ML applications in AM design, processing, and
production. In the design for AM (DfAM), ML can be lever-
aged to output new high-performance metamaterials and
optimized topological designs. InAMprocessing, contempo-
rary ML algorithms can help optimize process parameters,
examine powder spreading, and conduct in-process defect
monitoring. In production,ML can assist practitioners in pre-
manufacturing planning, and product quality assessment and
control. Goh et al. (2021) highlighted promising AM appli-
cations (design, material, process) with ML in biomedical,
tissue, and civil engineering, and discussed the potential inte-
gration with cloud services and cybersecurity. In contrast,
Meng et al. (2020) in 2020 organized the studies accord-
ing to different ML tasks (i.e., regression, classification, and
clustering) and evaluated the performance of various ML
algorithms.

While these review papers present various aspects of ML
applications in AM studies, some limitations can be noted:
firstly, the lackof strong focus anddeep exploration aboutML
applications in a specific AM process, which could be more
instructive for readers interested in that process; secondly,
the absence of systematic analysis and evaluation of ML
applications from the perspective of ML elements (e.g., data
availability, feature extraction, model selection, and inter-
pretation); finally, the failure to organize ML algorithms in a
suitableway forAMpractitioners to understand and select, in
that the algorithms are usually organized using ML-specific
language (e.g., supervised vs. unsupervised learning, regres-
sion vs. classification vs. clustering), rather than through the
lens of AM application.

Consequently, we aim to conduct a critical literature
review, focusing on the state-of-the-art ML applications for

process and performance optimization, specifically in the
dominant LB-PBF process in metal AM technology. The
process and performance optimization is based on process-
structure–property (PSP) relationships of LB-PBF, and their
machine learning applications include a variety of process
parameters (e.g., laser power, scan speed, layer thickness,
hatch spacing), process signatures (e.g., melt pool geome-
try, thermal profiles), structural features (e.g.,microstructure,
defects, surface characteristics) and property measurements
(e.g., tensile strength, density, fatigue life) as the input and
target variables. We will discuss the pros and cons of vari-
ous ML models for these LB-PBF applications in terms of
accuracy, complexity and interpretability, examine the data
sources used to train the models, and organize studies in
the popular PSP framework in AM. In this way, this work
not only presents ML applications accessible to LB-PBF
researchers for convenient ML algorithm selection but also
uncovers physics insights of LB-PBF toML researchers, pro-
moting the further adoption and innovation ofMLapplication
in LB-PBF studies.

Note that some other important ML applications in AM,
such as on process monitoring with sensor data or materials
development, will not be included in this review. The follow-
ing recent reviews of these fields can be suggested (Everton
et al., 2016b; Failed, 2017; Liu et al., 2021; Rao et al., 2015b;
Tapia & Elwany, 2014; Vulimiri et al., 2020).

Background

Laser beam powder bed fusion process

Among various metal AM technologies, powder bed fusion
(PBF) dominates the current global metal AM market. In
2019, the installedPBFunits accounted for about 86.5%of all
metal AM investments and up 85% of the total revenue (“Ad-
ditive Manufacturing Market by Technology” AMPOWER
Report, 2020), as shown in Fig. 2.

Laser beam powder bed fusion (LB-PBF) works on
the principle of consolidating feedstock material in layers
towards the fabrication of complex objects through local-
ized melting and resolidification using high-power energy
sources, namely a laser beam (Fig. 3). It involves deposit-
ing a thin layer of powder onto a build plate, melting the
powder with predefined patterns using the laser beam, and
constructing a 3D part track after track and layer upon
layer. During laser scanning, the chamber is protected from
oxidation by introducing an inert gas such as argon or nitro-
gen, and the build plate is heated at around 80 °C before
depositing/melting the powder. After finishing the process,
the remaining powder is vacuumed and sieved for later reuse.

Compared with other metal AM processes, LB-PBF can
fabricate complex geometries with better part accuracy and
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Fig. 2 In 2019, the installed PBF units were about 86.5% among
all metal AM technology, and its sale revenue also took up 85%

of the total revenue (“Additive Manufacturing Market by Technolo-
gy” AMPOWER Report, 2020). https://additive-manufacturing-report.
com/additive-manufacturing-market/

Fig. 3 The sketch of an LB-PBF process (Soltani-Tehrani et al., 2020)

surface finish (Shrestha et al., 2019). The powder bed acts as
a supporting mechanism that improves the feasibility of fab-
ricating cantilever-type structures. The powder bed can also
reduce thermal gradients, cooling rates, and residual stress by
insulating the build and removing convective heat transfer.
Additionally, preheating the powder bed before the selec-
tive melting stage can yield favorable reductions in residual
stress. Yet, LB-PBF has a low utilization rate of powder, and
the manufacturing chamber limits the size of its products.

LB-PBF involves complex physics, and its process param-
eters (such as laser power, scanning speed, powder layer
thickness) coupledwith other factors (e.g., design, feedstock)
govern microstructural traits and mechanical properties of
LB-PBF products (Molaei et al., 2020; Pegues et al., 2020;
Yadollahi & Shamsaei, 2017). During selective melting, the
laser moves at a relatively high speed and has to deliver a
very high power density to melt the metal powder, which
partially remelts the previously consolidated layer. This
process typically leads to a highly dynamic melt pool,
ultra-high solidification/cooling rates, and strong epitaxial
and directional grain growth. Common microstructural traits
of LB-PBF products consist of varying levels of porosity,

fine (possibly martensitic) microstructure, and highly tex-
turized, well-aligned grain structures. These microstructural
traits and their associated stress concentrations affect the
mechanical performance of LB-PBF parts. For instance, the
lack-of-fusion (LoF) defects tend to be aligned perpendicular
to the build direction, leading to strong anisotropy in tensile
and fatigue strength; under fatigue loading, pores and LoF
defects often serve as crack initiation sites and can greatly
reduce the fatigue life of LB-PBF parts (Yadollahi et al.,
2017).

Process-structure–property relationships in LB-PBF

While LB-PBF has a promising potential in complementing
or even substituting traditional manufacturing with its fabri-
cation flexibility, the understanding of the governing physics
of LB-PBF and the effect of the process on final product
performance must be strengthened to increase the level of
confidence in promoting LB-PBF in mission-critical appli-
cations (Russell et al., 2019). Constructing a linkage between
process (P) parameters, structure (S) and properties (P), also
known as process-structure–property (PSP) relationships of
LB-PBF, is required for scientists and engineers to optimize
the process and improve product quality in LB-PBF.

However, the LB-PBF fabrication involves multiscale
multi-physics processes, including powder-laser interaction
at the microscale, melt pool dynamics and columnar grain
growth at the mesoscale, and thermal–mechanical coupling
at the macroscale (Markl & Körner, 2016; Sames et al.,
2016). The strongly non-equilibrium processes, stemming
from melt pool flow, energy deposition, and phase transfor-
mations, are of particular importance. Hence, a deep and
comprehensive understandingof thePSP relationships inLB-
PBF fabrication is extremely challenging.

Experimental approaches, which involve trial and error,
can be implemented to investigate the PSP relationships in
LB-PBF. However, experiments are usually time-consuming
and costly. Further, the limited experimental data is often
insufficient to fully capture the complex PSP relationships.
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Consequently, it is impractical to obtain reliable models
merely by experimentalmethods sincemanyprocess parame-
ters are involved in LB-PBF fabrication and their interactions
are unknown.

Computational simulation helps understand physical
mechanisms, predict fabrication quality, and guide design
and optimization in LB-PBF (King et al., 2015; Smith
et al., 2016). The physics-based computational simulation
can reveal the underlying mechanism of specific features
during fabrication, such as melt pool geometry, keyhole,
and microstructure. There are macro-scale simulation meth-
ods (e.g., continuum-based thermal models) and mesoscale
level techniques (e.g., computational fluid dynamics (CFD)
models) (Masoomi et al., 2018). The macro-scale simula-
tion enables part-scale modeling and maps complex PSP
relationships with simplified assumptions and inexpensive
computation. For instance, finite element modeling (FEM)
methods can simplify the powder bed as a continuummaterial
and incorporate heat transfer but not fluid flow.However, they
often suffer from discrepancies with experimental results
due to the simplified assumptions and the lack of informa-
tion about physical properties. In comparison, high-fidelity
mesoscale level techniques, e.g., CFD models, resolve the
thermofluid flow behaviors of individual powder particles.
As a result, their computation time can be prohibitively high
to simulate and predict the mechanical properties on the part
scale.

The multi-physics multiscale LB-PBF process makes it
nearly impossible tomodel the PSP linkage quickly and accu-
rately with experiments or simulation alone. Hence, there is
a strong need for efficient and effective analytical surrogates
to approximate the PSP relationships in LB-PBF.

Introduction of ML in LB-PBF

With the increase of the amount of available sensing and
testing data, ML becomes an effective candidate to explore
and understand complex PSP relationships in LB-PBF in
a data-driven way. It uses historical data to train surrogate
models, which identify correlation among process variables,
approximate PSP relationships, and make predictions. Such
data-driven ML modeling can overcome the limitations of
experimental designs and computational simulation inmodel
complexity and computational expense. We will focus on
ML applications in process and performance optimization
for LB-PBF.

Organizing ML algorithms for LB-PBF

To demystify ML algorithms for LB-PBF researchers in this
paper, we organize them into three categories: (1) inter-
pretable ML, (2) conventional (shallow) ML, and (3) deep

Fig. 4 Three categories ofMLalgorithms inLB-PBF applications.Gen-
erally speaking, the increase of model complexity requires a large
amount of data to achieve high prediction accuracy but compromises
model interpretability

ML, and evaluate them in four practical dimensions: accu-
racy, complexity, interpretability, and data requirement, as
shown in Fig. 4. In contrast to the traditional ML paradigms
(e.g., regression, classification, or clustering), this new way
is more straightforward and understandable for practitioners
to select suitable ML algorithms for their applications.

(1) Interpretable ML (Rudin, 2019), rooted in regression
modeling and rule-based ML, regularizes model forms
by useful model assumptions (e.g., linearity), struc-
tural domain knowledge (e.g., monotonicity, causality,
additivity), or physic-based domain knowledge. The
interpretableMLmethods (e.g., linear regression, logis-
tic regression, decision tree) can establish simple linear
models between the predictors and the response with
high interpretability. They are beneficial to discover
knowledge and justify model predictions (Adadi &
Berrada, 2018). However, the model accuracy can be
inferior when the relationships between predictors and
response are overly nonlinear.

(2) Conventional (shallow) ML (e.g., random forest, sup-
port vector machine, artificial neural networks, Gaus-
sian process) emphasizes predictive performance rather
than interpretability. They canmodel nonlinear relation-
ships between predictors and response by “black-box”
models. However, it is of importance for conventional
ML to transform the raw data into suitable internal rep-
resentation by careful feature engineering.

(3) DeepML, such as deep neural networks, can learn com-
plex functions or relationships between input data and
output variables and achieve high prediction accuracy.
They are composed of multiple processing layers with
simple but nonlinear modules to transform the repre-
sentation at one level (starting with the raw input) into
a representation at a higher, more abstract level. Higher
layers of representation amplify aspects of the input that
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are important for discrimination and suppress irrele-
vant variations. With the composition of such nonlinear
transformations, complex functions can be learned from
data using a general-purpose learning procedure, but the
interpretation of output variables from input data is chal-
lenging.

With the increase of complexity in ML models, a large
amount of training data is required to achieve high pre-
diction accuracy, but the interpretability decreases ("Broad
Agency Announcement and Explainable Artificial Intelli-
gence (XAI)," Defense Advanced Research Projects Agency
2016).Moreover, for interpretableML and conventionalML,
the input features are selected or engineered manually. In
contrast, deep ML can automatically extract features from
the raw data. As convenient as it is, deep ML further com-
plicates the model and requires additional steps to increase
the interpretability. In addition, ensemble modeling by inte-
grating multiple base ML models is used in some LB-PBF
applications to reduce the generalization error of prediction.
It seeks the wisdom of crowds in making the prediction. As
long as the base ML models are diverse and independent,
the prediction error decreases when the ensemble approach
is used.

Data sources for ML in LB-PBF

For process and performance optimization with ML algo-
rithms, the available data characterize various aspects of
LB-PBF, mainly including (1) process parameters (e.g.,
energy input, scanning strategies); (2) material specifica-
tions; (3) process signatures (e.g., melt pool geometry,
thermal history); (4) structure of LB-PBF parts (e.g., defects,
surface roughness, microstructure); (5) properties and per-
formance on LB-PBF parts (e.g., density, tensile strength,
fatigue life) (Popova et al., 2017; Smith et al., 2016). They
are used to build surrogate models by ML in a data-driven
manner to approximate the PSP relationships in LB-PBF.

These data are generated from experiments or simulations
(Everton et al., 2016a; Smith et al., 2016). The exper-
imental measurements include both destructive methods
(such as scanning electron microscopy, optical tomography)
and non-destructive ways (such as X-ray radiography and
CT, ultrasonic techniques). Specifically, image-based data
regarding process signatures (e.g., melt pool) and structure
(e.g., microstructure, defects, surface roughness) of LB-PBF
parts entail detailed information about the fabrication process
and the products. The diversity of measurements promotes
applications of cutting-edge ML algorithms such as deep
learning in LB-PBF. Due to the expensive data acquisition
from experiments, simulation is sometimes also used to gen-
erate the training data for ML models. Furthermore, the

Fig. 5 The reviewed ML applications in LB-PBF for process and per-
formance optimization are organized in the PSP framework according
to their targeted relationships, indicated by the red arrows (Color figure
online)

simulated data can be integrated with experimental data to
improve model accuracy.

ML for process and performance
optimization in LB-PBF

In this section, we will review current ML applications for
the LB-PBF process and performance optimization. They
use MLmethods to extract hidden patterns in historical data,
approximate and understand the PSP relationships, andmake
predictions in a data-driven way.

The reviewed studies are organized according to their
targeted relationships in the PSP framework, namely, (1)
process parameters—process signature, (2) process—struc-
ture, (3) process—property, and (4) structure—property, as
shown in Fig. 5. For each targeted relationship, we will fur-
ther group and review papers in terms of a specific response.
For instance, when reviewing studies modeling the process-
structure relationship, the studies investigating how process
parameters affect defects are evaluated together. Such orga-
nization can reveal underlying physical mechanisms in these
relationships, augmenting the evaluation of different ML
methods with domain knowledge.

ML algorithms will be evaluated in terms of their cate-
gories (i.e., interpretable ML, conventional ML, and deep
ML) defined in section “Introduction of ML in LB-PBF”,
along the four dimensions of complexity, accuracy, inter-
pretability, and data requirement. The interpretability of
models is particularly important to understand the process
andperformance optimization.Data sources (i.e., experimen-
tal, simulation, or hybrid) and feature selection/extraction
(manual or automatic) for each study will also be introduced.
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Table 1 ML applications to model and utilize process parameters—signature relationship in LB-PBF

Materials Input Output Models Categories Data References

Alloy 718 Laser power,
scanning speed

Melt pool
geometry

Linear regression,
polynomial
regression

Interpretable
ML

Experiment Scime & Beuth,
(2019);
Sadowski et al.,
(2016)

Alloy 625, alloy
718

Powder properties,
size distribution,
layer thickness,
laser parameters

Melt pool
geometry

Bayesian ridge
regression,
kernel ridge
regression, linear
regression,
nearest
neighbors,
random forest,
support vector
machine

Interpretable
ML,
Conventional
ML

Experiment Molnar, (2020)

316L SS Laser power, beam
size, scanning
speed,
absorptivity

Melt pool
geometry

Regression tree,
Gaussian process

Interpretable
ML,
Conventional
ML

Simulation Kamath, (2016)

316L SS Laser power, beam
size, scanning
speed,
absorptivity

Melt pool
geometry

Regression tree,
locally weighted
kernel
regression,
ensemble tree,
multivariate
adaptive
regression
splines, support
vector
regression,
Gaussian process

Interpretable
ML,
Conventional
ML

Simulation Kamath & Fan,
(2018)

Laser power,
scanning speed,
laser spot
diameter,
absorptivity, layer
thickness

Melt pool
geometry

Gaussian process Conventional
ML

Simulation Olleak & Xi,
(2020)

316L SS Laser power,
scanning speed,
beam size

Melt pool
geometry

Gaussian process Conventional
ML

Hybrid Tapia et al.,
(2018)

17–4 PH, 316L SS Laser power,
scanning speed

Single-track
depth

Gaussian process Conventional
ML

Simulation Meng & Zhang,
(2020)

Laser power,
temperature

Melt pool size Gaussian process Conventional
ML

Hybrid Ren & Wang,
(2021)

Laser power, scan
speed, absorption,
thermal
diffusivity

Melt pool size Gaussian process Conventional
ML

Simulation Yang et al.,
(2018a)

316L SS Laser power Melt pool
geometry

Deep neural
networks

Deep ML Experiment Kwon et al.,
(2020)

Laser power,
scanning speed

Melt pool
geometry

Gaussian process Conventional
ML

Simulation Mondal et al.,
(2020)

Ti-6Al-4V Laser power, laser
speed, hatch
spacing

Thermal
histories

Support vector
regression

Conventional
ML

Simulation Srinivasan et al.,
(2020)

Ti-6Al-4V Laser power, laser
speed,

Track
morphologies,
bead
characteristics

Random forest,
ANN

Conventional
ML

Experiment Le-Hong et al.,
(2021)
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Table 1 (continued)

Materials Input Output Models Categories Data References

Laser power, spot
diameter, scan
speed, beam focus
position, laser
point distance,
layer thickness,
hatch spacing,
powder bed
temperature

Track quality Convolutional
autoencoder,
K-means
clustering

Deep ML,
Conventional
ML

Experiment Tibshirani,
(1996)

ML in process parameters—process signature
relationship

LB-PBF process signatures, such as melt pool character-
istics and thermal history, are directly affected by process
parameters and indicative of the structure and properties of
LB-PBF products. Therefore, many studies use MLmethods
to discover the relationship between process parameters and
process signatures and use the relationship to optimize the
process, as listed in Table 1.

Optimize process parameters according to desired melt
pool morphology

A melt pool is formed from the melting of powder parti-
cles by the laser. The cross-sectional morphology of the melt
pool records the interaction between laser and metal powder
during fabrication. The impact of process parameters (mainly
laser power and speed) on themelt pool morphology is inves-
tigated using ML methods.

Interpretable ML methods are used to linearly relate the
process parameters to the melt pool geometry (e.g., width,
depth, area within the substrate, height) post-fabrication. For
instance, Scime&Beuth (2019) mapped the melt pool cross-
sectional geometry to the combinations of laser power and
scanning speed on LB-PBF Inconel 718 alloy using linear
regression. The cross-sectional width, depth, and area were
measured using microscopy on 720 melt tracks under 36 dif-
ferent process parameter combinations. Also, with Inconel
718 alloy, Sadowski et al. (2016) printed 24 square LB-PBF
specimens under different combinations of laser power and
scanning speed from a full factorial experimental design, and
used a polynomial regression model to understand the effect
of process parameters on scan line quality and melt pool
geometry. The linear energy density, the ratio of laser power
to scanning speed, was introduced to model the second-order
polynomial trend line for melt pool width with high fidelity
(R2 ≥ 0.92).

Apart from laser power and scanning speed, other process
parameters and material properties are also included in the

interpretable ML models as input features. For instance, Lee
et al. (2019) used 23 input features of LB-PBF, including
chemistry of powders (alloy 625 and alloy 718), materi-
als thermal property (solidus, liquidus, density, conductivity,
thermal diffusivity, specific heat), powder size distribution,
layer thickness and laser parameters (power, scan speed,
energy density, beam diameter) to model 5 responses of melt
pool geometry (i.e., width, depth, area within the substrate,
height, area based on the height). More data were required in
training with the increase of input features, and the melt pool
geometry for 472 single trackswasmeasured. Bayesian ridge
regression, kernel ridge regression, and linear regression can
model linear relationships with high interpretability.

Moreover, to reduce the cost for experiments, simulated
data are also used for investigating the relationships between
process parameters and melt pool geometry. For instance,
Kamath (2016) used simulated data of melt pool depth for
LB-PBF 316L stainless steel based on process parameters
(laser power, speed, beam size, and absorptivity) to develop a
predictive model with a regression tree. Later, Kamath& Fan
(2018) generated training data of melt pool geometry from
two simulations (i.e., Eagar–Tsai andVerhaeghe) with differ-
ent parameter combinations of scanning speed, laser power,
beam size and absorptivity. Three regression tree models
were trained with 462, 100, and 41 simulated data points,
respectively. The prediction error of melt-pool characteris-
tics for LB-PBF from the regression tree can be as low as
1.92%.

Conventional MLmethods are trained with historical data
to make predictions on melt pool geometry according to pro-
cess parameters. For instance, Lee et al. (2019) used a variety
of conventional ML approaches, such as nearest neighbor
clustering, random forest, support vector machine (SVM),
to facilitate reliable prediction of melt-pool geometries for
alloy 625 and alloy 718 from 23 input features of power
and process parameters. Trained on 472 single tracks, the
results showed that SVM and nearest neighbors outperform
other ML models in terms of prediction accuracy. However,
the physics-based interpretation was challenging with these
conventional ML models.
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Kamath & Fan (2018) built reliable surrogate models
to predict the melt-pool characteristics for LB-PBF from
process parameters by different ML algorithms, including
locally weighted kernel regression (LWKR), ensemble tree,
multivariate adaptive regression splines (MARS), support
vector regression (SVR), and Gaussian process (GP). The
input of surrogate models was process parameters, includ-
ing scanning speed, laser power, beam size, and absorptivity,
and the output is length, width, depth of melt pools. Three
training datasets were generated from simulations (Eagar–T-
sai and Verhaeghe). In comparison, the GP-based surrogate
model provided the best prediction accuracy (> 99%) and
was the easiest to use in practice, even with a small dataset.

Particularly, GP modeling is a popular and convenient
method for modeling melt pool characteristics based on pro-
cess parameters with experimental and simulated data. The
covariance matrix of GP implies that similar values of pro-
cess parameters can lead to similar melt pool characteristics.
For instance, by using simulated data, Kamath (2016) devel-
oped a Gaussian process to predict the melt pool depth for
LB-PBF 316L stainless steel based on process parameters
(laser power, speed, beam size, and absorptivity) with low
prediction error (~ 3%). Olleak & Xi (2020) developed a
GP regression metamodel for high-fidelity melt pool size
prediction from process parameters of LB-PBF (laser power,
scanning speed, laser spot diameter, absorptivity, layer thick-
ness) with 94 FEM-simulated data. With the implication of
the GP covariance matrix, the metamodel can be calibrated
to high accuracy with experimental data of small size.

Tapia et al. (2018) proposed a GP-based surrogate model
of the LB-PBF process that predicts melt pool depth in sin-
gletrack experiments given laser power, scan speed, and laser
beam size. The authors developed a GP surrogate model
from 96 experimental data of 316L stainless steel and 26
simulation data, with prediction errors less than 10%, respec-
tively, as in Fig. 6. Later, Meng & Zhang (2020) developed a
GP regression model to predict the remelted depth of single
tracks of LB-PBF 17–4 PH as a function of laser power and
scanning speed. The GP model was trained by 24 simulated
data from a computational fluid dynamics (CFD) model. The
mean absolute prediction error from the GP model was only
0.6 um for a powder bed with a layer thickness of 30 um.
Ren &Wang (2021) modeled melt-pool dynamics for multi-
tracks built with L-PBF AM processes by GPR with both
experimental and simulated data of laser power and melt
pool tempeature. The achieved R2 on the prediction of melt
pool size is about 96%. Then a (sub)optimal control of laser
power, derived using a projected gradient descent algorithm,
was applied to regulate themelt-pool size to a constant refer-
ence value with a RMSE of ~ 10%.

Lastly, to dynamically predict the melt pool size of LB-
PBF from process parameters, the GP model can be further

improved by adjusting the covariance matrices with sim-
ulated data. For instance, Yang et al. (2018a) proposed
a dynamic variance–covariance matrix (DVCM) method
by incorporating dynamic covariance matrices into the GP
regression to deal with large and nonideal datasets in man-
ufacturing scenarios. DVCM method was used to build a
metamodel for predicting the melt pool size of LB-PBF from
process parameters (laser power, scan speed, absorption coef-
ficient, and thermal diffusivity). A total of 1,050 data points
were simulated from a full factorial design of experiments.
The prediction error was less than 0.03%. Besides, Mondal
et al. (2020) developed a GP regression surrogate model to
predict time-dependent melt pool geometry during the LB-
PBF fabrication process based on laser power and scanning
speed. The model was trained using 200 Eagar-Tsai sim-
ulated values of melt pool depth and width at each time
instant with different combinations of laser power and scan-
ning speed.

Optimize process parameters with other process signatures

Conventional ML is also used to optimize LB-PBF pro-
cess parameters with the thermal histories of LB-PBF. For
instance, Srinivasan et al. (2020) integrated support vec-
tor regression and optimization to identify scan parameter
sets (i.e., laser power, laser speed, and hatch spacing) that
produce similar local processing histories in LB-PBF Ti-
6Al-4V specimens. The local thermal histories of reference
tiles were simulated from a physics-based analytical thermal
model under different combinations of process parame-
ters. These local thermal histories underwent dimensionality
reduction by principal component analysis and partition-
ing by density-based spatial clustering to form a reference
parameter-thermal history "map". The scan parameter sets
for arbitrary part geometry can be projected onto this "map"
and iteratively optimized to ensure similar local thermal his-
tories.

Le-Hong et al. (2021) investigated the effects of two
key process parameters of SLM (i.e., laser power and
scanning speed) on the single-track morphologies and the
bead characteristics, especially the depth-to-width D/W and
height-to-width H/W ratios using ML approaches (i.e., ran-
dom forest and ANN). Both models could predict reasonably
well the two aspect ratios, D/W and H/W, with an overall R2

value reaching about 90%, respectively.
When a large amount of image data is available, deep ML

can be a viable candidate to facilitate feature extraction and
formulate accurate predictive models. For instance, Silber-
nagel et al. (2019) explored a convolutional autoencoder-
based process parameter optimization for LB-PBF copper
specimens with 47,488 optical images of single scan tracks
from different parameter combinations (laser power, laser
spot diameter, powder bed temperature, laser scan speed,
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Fig. 6 Visualization of results for the GPmodel trained with simulation
dataset a mean value of the predictions and b standard deviation of the
prediction. L-PBF process windows specifying condition and keyhole
mode behavior with d ≥ w

2 criterion in c and normalized enthalpy

�H
hs

≥ 30 criterion in (d). The color scale on the right bar represents
the standard deviation of the GP predictions, while the figures on the
white contour lines display the mean value of the GP prediction (Tapia
et al., 2018) (Color figure online)

laser point distance, layer thickness, laser beam focus posi-
tion, and hatch spacing). These images were labeled accord-
ing to the track quality (e.g., continuous, discontinuous,
balling), and fed into the proposed convolutional autoen-
coder. The output features were then clustered by a k-means
mini-batch algorithm to find high-quality clusters with fea-
sible process parameters. The results from this deep ML
aligned with many observations in the traditional parame-
ter optimization process on deciding the optimal laser point
distance, powder layer thickness, and laser scanning speed.
Kwon et al. (2020) applied a deep neural network (10 hidden
layers neural network with 360 nodes) to classify melt-
pool images with respect to six laser power conditions and
achieved a classification failure rate under 1.1% for 13,200
test images.

ML in process—structure relationship

Adjusting process parameters can lead to different structural
properties of LB-PBF products (such as surface roughness,

porosity, and microstructure). In this section, ML appli-
cations exploring the relationships between process and
structure are reviewed, as in Table 2. We noticed there are
three highlights in the ML applications:

(a) Interpretable ML is mostly used to evaluate the impact
of process parameters on the LB-PBF part structure;

(b) Conventional ML, especially artificial neural networks
(ANN), is adopted to model complex relationships and
make accurate predictions;

(c) Clustering is applied for both data preprocessing and
modeling.

Process and performance optimization with LB-PBF
structural traits

Many studies investigate process parameters’ impact on sur-
face roughness and porosity, two preeminent structural traits
of LB-PBF products. For instance, Gockel et al. (2019) fab-
ricated fourteen as-built LB-PBF alloy 718 coupons with
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Table 2 ML applications to model and utilize process—structure relationship in LB-PBF

Materials Input Output Models Categories Data References

Alloy 718 Laser power,
scanning speed

Surface roughness,
internal defects

Linear
regression

Interpretable
ML

Experiment Gockel et al.,
(2019)

Alloy 718 coupon position,
orientation,
fraction recycled
powder, laser
incidence angles

Porosity Random forest Conventional
ML

Experiment Kappes et al.,
(2018)

Ti-6Al-4V Laser power,
scanning speed,
layer thickness,
hatch distance

Surface roughness,
density

ANN Conventional
ML

Experiment Park et al., (2022)

CoCr alloy Beam current and
scanning speed
(EB-PBF)

Surface roughness,
porosity

Support vector
machine
(SVM)

Conventional
ML

Experiment Aoyagi et al.,
(2019)

Alloy 718 Length, sphericity,
aspect ratio of
pores

Porosity K-means
clustering

Conventional
ML

Experiment Snell et al.,
(2020)

316L SS Laser power,
scanning speed,
beam size

Keyhole mode Gaussian process Conventional
ML

Hybrid Tapia et al.,
(2018)

17–4 PH, 316L
SS

Laser power,
scanning speed

Keyhole mode Gaussian process Conventional
ML

Simulation Meng & Zhang,
(2020)

Laser power, scan
speed, layer
thickness

Open porosity Ensemble of
ANN,
Bayesian
classifier, SVM

Conventional
ML

Simulation Garg et al.,
(2015)

Scan pattern,
velocity, melt pool

Microstructures Multivariate
polynomial
regression

Interpretable
ML

Experiment Popova et al.,
(2017)

Build directions,
orientations

Shrinkage rate Linear model Interpretable
ML

Experiment Yang et al.,
(2002)

Layer thickness,
laser power,
scanning speed,
scanning mode,
hatch spacing,
interval time,
surrounding
temperature

Shrinkage ratio Artificial neural
network
(ANN)

Conventional
ML

Experiment RongJi et al.,
(2009)

Powder bed
support, laser spot
size, remelting
depth of heat
source

Shape deviations Artificial neural
network
(ANN)

Conventional
ML

Simulation Hong et al.,
(2020)

316L SS Laser power, spot
diameter, scan
speed, beam focus
position, laser
point distance,
layer thickness,
hatch spacing,
powder bed
temperature

Lattice
deformation

Convolutional
neural
networks
(CNN)

Deep ML Experiment Garland et al.,
(2020)
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Table 2 (continued)

Materials Input Output Models Categories Data References

Ti-6Al-4V Spreader translation
speed, spreader
rotation speed

Powder mass,
spread
throughput, layer
roughness, layer
porosity

Artificial neural
network
(ANN)

Conventional
ML

Simulation Desai & Higgs,
(2019)

Ti-6Al-4V Spreader translation
speed, spreader
rotation speed

Powder layer
roughness, layer
porosity

Artificial neural
network
(ANN)

Conventional
ML

Simulation Zhang et al.,
(2017)

Ti-6Al-4V Thermal signature
of surface

Subsurface
porosity

Logistic
regression,
random forest,
gradient
boosting,
Gaussian
process

Interpretable
ML,
Conventional
ML

Experiment Paulson et al.,
(2020)

Ti-6Al-4V Thermal histories Microstructure K-means
clustering

Conventional
ML

Simulation Donegan et al.,
(2020)

different combinations of process parameters and found that
laser power and scanning speed could linearly impact surface
roughness and internal defects within an operating window.

Conventional ML methods are more popular, as they
offer high prediction accuracy to model the complex pro-
cess—structure relationships. For instance, Kappes et al.
(2018) investigated the impact of process parameters (coupon
position, orientation, fraction recycled powder, and laser inci-
dence angles) on the porosity of LB-PBF Inconel 718. The
laser settings, laser scan path, and layer thickness were kept
at the manufacturer’s recommendation. A random forest net-
work (RFN) was trained by pores of LB-PBF specimens
scanned fromX-ray CT. The results revealed that the orienta-
tion of the part had the greatest effect on the pore population
while the position on the plate, transverse to the blade direc-
tion, had the greatest impact on the median pore size and
distribution.

Park et al. (2022) applied ANN with four key process
parameters (laser power, scanning speed, layer thickness,
and hatch distance) to predict two target properties of a part
fabricated by the SLM technique (density ratio and surface
roughness). The model’s performance was proven with a
value of R2 of 99% for both density ratio and surface rough-
ness.

Aoyagi et al. (2019) constructed a processmap for electron
beam powder bed fusion (EB-PBF) CoCr alloy specimens
using a support vector machine (SVM), predicting surface
roughness and porosity of specimens from two process
parameter combinations (beam current and scanning speed).
The SVM model was trained by 11 fabricated cylinders,
which were classified into two classes (good or bad) accord-
ing to pore radii and surface morphology. The median error
rate for the prediction was as low as 0.09.

Snell et al. (2020) formulated a pore classification method
based on k-means clustering for LB-PBF specimens to dif-
ferentiate gas pores, keyholes, and lack of fusion. 2D pore
data of 81 LB-PBF Inconel 718 specimens are obtained from
micrographs, and the roundness and length of 21,955 pores
are used as input for k-means clustering. 3D pore data of
LB-PBF Ti-6Al-4V specimens were obtained from X-ray
computed tomography; the length, sphericity, and aspect
ratio were used to cluster 2664 pores. The results in Fig. 7
showed that 3D pore data clustering performed well com-
pared with the traditionally defined limits approaches.

Moreover, GPmodeling was also used to identify keyhole
regimes on the laser power and scanning speed combina-
tion for LB-PBF. Tapia et al. (2018) proposed a GP-based
surrogate model that mapped the keyhole melting controlled
regimes onto a power versus scan speed diagram. TheGP sur-
rogate model was trained from 96 experimental data of 316L
stainless steel and 26 simulation data given laser power, scan
speed, and laser beam size combination. Meng and Zhang
(2020) also developed a GP regression model to identify
the keyhole mode from laser power and scanning speed for
LB-PBF 316L and 17–4 PH stainless steel. The GP model
was trained by 24 simulated data from a computational fluid
dynamics (CFD)model as a function of laser power and scan-
ning speed.

Ensemble modeling, which combines several individual
ML algorithms to improve prediction accuracy, is used in
complex process-structure relationships. Garg et al. (2015)
presented multi-gene genetic programming (MGGP) com-
bining with ANN, Bayesian classifier, and SVM algorithm to
predict the open porosity in LB-PBF products with the com-
bination of three process parameters (layer thickness, laser
power, and laser scan speed). The results showed that the two
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Fig. 7 Pore classificationbasedonk-means clustering forLB-PBFspec-
imens to differentiate gas pores, keyholes, and lack of fusion for the 3D

pore data: a clustered results based on pore length and sphericity;b clus-
tered results based on sphericity and vertical aspect ratio (Snell et al.,
2020)

process variables (the laser power and laser scan speed) had
the highest impact on the open porosity.

For the microstructure of LB-PBF parts, Popova et al.
(2017) introduced a novel data science workflow to investi-
gate the process-structure linkages. A set of 1799 individual
syntheticmicrostructures from the Potts-kineticMonte Carlo
model were simulated by varying process parameters (e.g.,
scan pattern, velocity, and melt pool). Chord length distri-
butions from microstructures were selected as the features
with dimensionality reduction by principal component anal-
ysis (PCA). Multivariate polynomial regression was used to
establish a surrogate model for the final microstructure from
the process parameterswith a high goodness of fit (R2 > 90%)
and prediction accuracy (MAE < 0.05).

Inference on LB-PBF structure from process signatures

Process signatures such as thermal history can be used in
ML models to infer the structure traits of LB-PBF parts. For
example, Paulson et al. (2020) used several ML methods,
such as logistic regression, random forest, gradient boost-
ing classification, and GP classification, to learn correlations
between the thermal history of prints and subsurface poros-
ity in LB-PBF Ti-6Al-4V for qualification and certification.
Fifteen specimens were built with different combinations of
laser power, scan speed, scan strategies, and laser spot sizes.
The thermal signature of the surface was measured using
a fixed infrared (IR) camera, while porosity formation was
observed through synchrotron-based high-speed x-ray imag-
ing. ML methods were used to connect features from IR
images to the response (large and low porosity, no porosity)
and achieved a test accuracy of more than 87.5%.

Donegan et al. (2020) developed a K-means clustering-
based zoning procedure to label regions of an LB-PBF
Ti-6Al-4 V component such that areas with similar process-
ing were categorized under the same label. Zoning process
history can provide insight into the formation of microstruc-
tures at different regions and measurement locations. They
simulated thermal histories for 11 different geometries froma
discrete sourcemodel and examined the local thermal history
for each point in a 0.1 s temporal and 2 mm spatial window.
The high-dimensional thermal histories were processed by
symbolic aggregate approximation (SAX) for dimensional-
ity reduction and then clustered by K-means clustering to
produce zoned maps of processing thermal history.

Process and performance optimization with LB-PBF
geometry

Process parameters (such as laser power, scanning speed,
powder thickness, build direction) are used as input for ML
methods to compensate for the geometry of LB-PBF parts.
For instance, Yang et al. (2002) utilized the analysis of vari-
ance (ANOVA) to investigate the impact of building positions
ofLB-PBFparts on shrinkage rate and formulate scale factors
to maintain dimensional accuracy against the changes in the
build positions. 27 experiments designed from the Taguchi
method with 13 controllable variables (i.e., build directions,
orientations) were implemented. The scale factors were a lin-
ear combination of selected levels of controllable variables
from ANOVA outcomes. On average, the dimensional accu-
racy with the obtained scale factors could be improved by
approximately up to 24% compared to other commercially
available methods.
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Artificial neural networks (ANNs) provide more flexibil-
ity in compensating part geometry from process parameters
than the linear ML models. RongJi et al. (2009) applied
an ANN to model the shrinkage ratio of LB-PBF compo-
nents from different process parameters, such as powder
layer thickness, laser power, scanning speed, scanningmode,
hatch spacing, interval time, and surrounding temperature.
The ANN model had 7 input variables (process parameters),
one hidden layerwith 8 nodes, and the single output of shrink-
age ratio. It was trained from 27 data points, had an average
relative error of 0.066 on 6 testing data points. Furthermore,
a genetic algorithm (GA)was applied to optimize the process
parameters to yield minimum shrinkage.

Hong et al. (2020) proposed using an ANN to compensate
for truss lattice structures with circular cross-sections printed
by LB-PBF. The designed lattice dome structures had five
building overhang angles and six platform orientation angles,
where overhang angles were influenced by the support of
the powder bed, laser spot size, and remelting depth of the
laser heat source. Point cloud data from the 3D stereolithog-
raphy (STL) model and X-ray CT scans (20,000–40,000
data points) were used to train the proposed ANN model,
which was based on a multilayer perceptron (MLP) architec-
ture with an input layer of two input variables, one hidden
layer of 40 neurons and an output layer. Experimental results
showed that ANN improved the cross-sectional area sig-
nificantly and resulted in a more improved roundness for
the trusses than analytical compensation approaches. More-
over, the ANN compensation method can generate free-form
lattice cross-sections to compensate local shape deviations
more easily, thereby improving the agreement between the
as-printed compensated structures and the as-designed ones.

Moreover, deepML is used to predict part deformation by
combining process parameters with designs. For instance,
Garland et al. (2020) used convolutional neural networks
(CNN) to predict the deformation of lattice structures printed
byLB-PBF 316L stainless steel. TheCNNalgorithm directly
related imaging to physical properties. It was trained by
~ 4000 height maps of a total of 96 lattices by varying
laser power and scan speed, and it can predict a lattice’s
deformation with a mean error of 4 ~ 7%. To increase the
interpretability of the deep ML model, the authors examined
the active convolutions of each layer and the gradient of the
kernel weights with respect to the predicted value enables
visualization of the key features within an image that influ-
enced the prediction.

Optimization of spreader parameters for LB-PBF powder
layer quality

Process parameters of LB-PBF powder spreader (such as
spreader speeds) are also used in ANNs to investigate spread
layer quality (such as surface roughness and porosity of each

powder layer). For instance, Desai & Higgs (2019) proposed
a feed-forward, backpropagation neural network surrogate
model to study the relationship between spreader speeds
and spread layer properties of an industrial-grade Ti-6Al-
4V powder, as shown in Fig. 8. The neural network was
employed to interpolate between the highly nonlinear results
obtained by the discrete element method (DEM) simula-
tions. It had two input variables (spreader translation speed,
spreader rotation speed), one hidden layer with 200 nodes,
and four output properties, i.e., the mass of powder in the
sampling region, spread throughput, roughness of the spread
layer, and porosity of the spread layer. It was trained by 50
virtual spreads from DEM simulations, and the prediction of
spreading Ti-6Al-4V powder on 79um substrate achieved at
least 96% accuracy.

Zhang et al. (2017) proposed an ANN to interpolate the
highly nonlinear relationships between spreader parameters
(i.e., rotation speed and translation speed) and desired sur-
face roughness and porosity of LB-PBF Ti-6Al-4V powder
layers. The training data (35 samples) were also from the
DEM simulation. A spreading process map was generated to
determine spreader parameters to achieve the desired surface
roughness with a prediction error of less than 3%, saving the
total time for printing and reducing the build’s cost.

ML in process—property relationship

LB-PBF process parameters significantly influence the prod-
uct properties, such as density, tensile strength, yield strength,
and fatigue performance, for reliable applications of LB-
PBF. ML methods have been utilized as surrogate models
to approximate the relationships between process parame-
ters and product properties, as shown in Table 3.

The two major objectives of modeling process-property
relationships include: (1) to discover the operating win-
dow for desired properties/performance; (2) to predict the
final properties based on newly designed process parameters.
There are three highlights for ML application in process-
property relationship modeling:

(a) Interpretable ML and conventional ML are mainly used
in modeling the process—property relationship com-
pared with deep ML methods.

(b) Ensemblemodelingwith several conventionalML algo-
rithms is a good practice to increase prediction accuracy.

(c) The same ML algorithm can be applied to predict dif-
ferent LB-PBF part properties in different models but
with the same process parameters.
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Process and performance optimization with LB-PBF part
density

Modeling LB-PBF part density from process parameters is
an early initiative in applying ML methods in LB-PBF stud-
ies. The early work mostly uses interpretable ML algorithms
(such as linear regression) to explore the linear relation-
ship between the process parameters and the density. For
instance, Sun et al. (2013) applied a linear regression model
to model the relationship between the density of LB-PBF Ti-
6Al-4V specimens and four process parameters (i.e., laser
energy density, hatch spacing, powder layer thickness, and
scanning strategy). The specimens were built in sixteen dif-
ferent experiments (three specimens in each experiment)with
varying process parameters designed by the Taguchi method.
ANOVA was used to evaluate the significance of the impact
of the four process parameters on the specimen density. The
result showed that the powder layer thickness had the most
significant impact on the density, while the hatch spacing
was the least impactful. Their impact was modeled by a lin-
ear regression model to quantify the relationship and enable
density prediction from these four process parameters with
8.1% relative error.

Aboulkhair et al. (2014) investigated the operating win-
dows of parameters (scan speed, scan orientation, and
hatch spacing) required to produce high-density parts from
AlSi10Mg alloy using LB-PBF. The relative density of each
of the built samples was determined by image processing
of three cross-sectional optical micrographs, as in Fig. 9.
These micrographs were used to quantify the evolution of
pores with different hatch spacing, scan speed, and scan ori-
entation. A compromise between the different parameters
and scan strategies can produce parts, achieving a density of
99.8%.

Read et al. (2015) investigated the influence of process
parameters of LB-PBF on the porosity development in the
Al-Si10-Mg builds. 27 samples are printed under different
parameter combinations (i.e., laser power, scan speed, hatch
spacing, and island size) through a fractional factorial design.
ANOVAwas used to identify significant parameters and their
interactions; then, second-order polynomial regression was
fitted to describe the relationship between the process param-
eters and porosity with a high goodness of fit (R2 = 0.87). It
showed that either decreasing the laser power or increasing
the scan speed could result in increased porosity.

Shah & Dey (2019) applied Taguchi design and ANOVA
to investigate the effects of process parameters (laser power,
scan speed, and hatch spacing) on density and ultimate ten-
sile strength of LB-PBF AlSi10Mg components from 9 runs
of experiments. The ANOVA results indicated that the hatch
spacinghad themost important effect ondensity. TheTaguchi
analysis found that laser power (followed by hatch spac-
ing) was the most impactful on ultimate tensile strength. The
best ultimate tensile strength and density were achieved with
1200 mm/s of scan speed, 0.15 mm of hatch spacing, and
330 W of laser power.

To achieve high-accuracy prediction, conventional ML
methods, especially GP and ANNs, are adopted to model
the relationship between density and process parameters. For
instance, Tapia et al. (2016) proposed a GP-based predictive
model for the learning and prediction of the density/porosity
inLB-PBF17–4PHspecimens from twoprocess parameters:
laser power and scanning speed. The model was trained by
42 specimens from a hypercube design and later improved by
another 40 specimens to achieve prediction error < 20%. Fur-
thermore, the case study results were instrumental in finding
parameter combinations that result in high density inLB-PBF
17–4 PH specimens.

Fig. 8 a Schematic of an ANN for modeling the spread layer quality
(such as spread throughput) for LB-PBF from process parameters of the

spreader (such as spreader speeds); b regression surface of backpropa-
gation ANN prediction for spread throughput of Ti-6Al-4V powder in
LB-PBF (Desai & Higgs, 2019)
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Table 3 ML applications to model and utilize process—property relationship in LB-PBF

Materials Input Output Models Categories Data References

Ti-6Al-4V Laser energy
density, hatch
spacing, powder
layer thickness,
scanning
strategy

Density Linear regression Interpretable ML Experiment Sun et al., (2013)

AlSi10Mg Scan speed, scan
orientation,
hatch spacing

Density Linear regression Interpretable ML Experiment Aboulkhair et al.,
(2014)

AlSi10Mg Laser power, scan
speed, hatch
spacing, island
size

Density Polynomial
regression

Interpretable ML Experiment Read et al.,
(2015)

AlSi10Mg Laser power, scan
speed, hatch
spacing

Density, ultimate
tensile strength

Linear regression Interpretable ML Experiment Shah & Dey,
(2019)

17–4 PH Laser power, scan
speed

Density GP Conventional ML Experiment Tapia et al.,
(2016)

Layer thickness,
hatch spacing,
laser power,
scanning speed,
environment
temperature,
interval time,
scanning mode
(SLS)

Density ANN Conventional ML Experiment Wang et al.,
(2009)

Laser power, scan
speed, scan
spacing, layer
thickness

Density ANN Conventional ML Experiment Shen et al., (2004)

Ti-6Al-4V Laser power, scan
speed, hatching
distance, build
orientation,
building
strategy, layer
thickness

Density Response surface
methodology
(RSM), ANN

Conventional ML Experiment Costa et al.,
(2022)

Scanning speed,
hatch spacing,
laser pulse
frequency

Density Ensemble of
regression, GP,
SVM

Conventional ML Experiment Yang et al.,
(2018b)

316L SS Laser power, scan
speed, layer
thickness

High cycle
fatigue life

ANN Conventional ML Experiment Zhang et al.,
(2019)

316L SS Laser power, scan
speed, layer
thickness, hatch
space

Fatigue life ANN, random forest,
SVM

Conventional ML Simulation Zhan & Li,
(2021)

Fatigue life from
miniature
specimens

Fatigue life ANN Conventional ML Hybrid Wan et al., (2019)

AlSi10Mg Volumetric energy
density, building
orientation

Ultimate tensile
strength,
hardness,
roughness

Optimal fuzzy
regression

Conventional ML Experiment Ponticelli et al.,
(2020)
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Table 3 (continued)

Materials Input Output Models Categories Data References

316L SS Laser power, scan
speed, hatch
spacing, layer
thickness

Density,
hardness,
surface
roughness,
ultimate tensile
strength

Bayesian network Conventional ML Experiment Hertlein et al.,
(2020)

AlSi10Mg Hatch width, laser
speed, laser
power

Ultimate
strength, yield
strength,
elongation

Diffusion maps Conventional ML Experiment Marmarelis &
Ghanem, (2020)

Material
composition,
processing
parameters
(cooling rate,
aging
temperature,
aging time)

Tensile yield
strength, oxide
precipitation, η
precipitation
strengthening,
solid solution
strengthening

Gaussian process Conventional ML Simulation Yan et al., (2018)

Alloy 718 Build orientation,
scan strategy,
number of
lasers,
geometrical
material
descriptors

Porosity, creep
rate

Ridge, LASSO, RF,
Gradient boosted
tree, SVR, DNN

Interpretable ML,
Conventional
ML, Deep ML

Experiment Sanchez et al.,
(2021)

316L SS Laser power, layer
thickness,
scanning speed

Powder
utilization rate,
energy
consumption,
tensile strength

Ensemble of GP,
SVM, radial basis
function (RBF)

Conventional ML Experiment Li et al., (2020)

Fig. 9 a Porosity evolution in AlSi10Mg samples processed using different combinations of scan speeds and scan strategies; b hatch spacing, scan
speed, and powder layer thickness are modeled linearly to predict the different pores in LB-PBF samples (Aboulkhair et al., 2014)
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Wang et al. (2009) modeled the effects of process param-
eters on the density of the part prepared by selective laser
sintering using an ANN. The ANN inputs were the pro-
cess parameters, including layer thickness, hatch spacing,
laser power, scanning speed, temperature of the working
environment, interval time, and scanning mode. The pre-
diction accuracy of ANN on part density was verified by
the experimental data. Shen et al. (2004) also introduced
an ANN approach for density prediction. Two-layer super-
vised neural networks were used, with the inputs to the
neural network are LB-PBF process parameters such as laser
power, scan speed, scan spacing, and layer thickness. The
orthogonal experimental method was employed for collect-
ing experimental training and test sets. Although the ANN
model can analyze the relationship between the process
parameters and the part density quantitatively, it was chal-
lenging to interpret the results. Costa et al. (2022) applied
response surface methodology (RSM) and ANN to formu-
late two surrogatemodels to predict the density of Ti-6Al-4V
SLM manufactured parts from six process parameters (i.e.,
laser power, scan speed, hatching distance, build orientation,
building strategy, layer thickness) and achieve 0.1 MAPE.
They also used three nature-inspired optimization methods
(i.e., self-adaptive harmony search, genetic algorithm, and
particle swarm optimization) to optimize process parameters
for high-density parts, which showed that the optimal ANN-
based solutions took on smaller laser power values, higher
hatching values and smaller scanning pattern angles than the
RSM-based parameter configurations.

Furthermore, ensemble modeling is also used to increase
the prediction accuracy in LB-PBF density. Yang et al.
(2018b) aggregated three differentML algorithms (i.e., poly-
nomial regression, kriging, and support vector machine) into
a weighted composite in an ensemble model. They applied
this ensemble model on an LB-PBF process to predict the
relative density of parts from process parameters (scanning
speed, hatch spacing, and laser pulse frequency). A total of
105 training data was generated from a fractional factorial
design, and the prediction error was 5.47%, better than the
individual algorithms in the ensemble.

LB-PBF part fatigue life prediction from process parameters
with ML

The fatigue performance of LB-PBF parts is crucial in
mission-critical and safety–critical applications. Since it is
under the influence of numerous manufacturing parameters,
conventional ML, especially ANNs, has been used as surro-
gatemodels to approximate the relationships between fatigue
life and process parameters.

Zhang et al. (2019) predict the high cycle fatigue life of
LB-PBF 316L stainless steel from process parameters (laser
power, scan speed, and layer thickness) and post-processing

treatments by using an ANN with fuzzy logic, as shown in
Fig. 10a. The model was constructed from 18 experimen-
tal samples to map the complex nonlinear process-property
relationship. Moreover, the authors also used the same ANN
algorithm to develop a property-based model, as in Fig. 10b,
with ultimate tensile strength and elongation to failure as
input to predict the fatigue life. The two models performed
well in fatigue life prediction with root mean square errors
of less than 21%, as in Fig. 10c and d.

Zhan & Li (2021) predicted fatigue life of LB-PBF 316L
stainless steel specimens from process parameters (including
laser power, scan speed, hatch space, and powder layer thick-
ness) with three ML models, namely, ANN, random forest
(RF), and SVM. These ML models were trained by 70 sim-
ulations from the continuum damage mechanics technique
and validated with experimental data from open publica-
tions. The results showed that fatigue life prediction with the
SVM model could achieve ~ 15% relative error. To increase
physics-based understanding and interpretability, parametric
studies on fatigue life by changing each process parameter
were implemented.

Moreover,Wan et al. (2019) proposed a potential roadmap
to establish a data-driven evaluation platform for fatigue
life prediction in metal additive manufacturing based on
many miniature specimen-based experiment data, theoreti-
cal computations, and the ‘big data’ analysis with ML. They
attempted to useANNs to predict fatigue properties of ametal
AM part from standard specimen tests and static mechanical
properties of miniature specimens.

Process and performance optimization with multiple
properties

Process and performance optimization can be achieved by
modeling the relationships between process parameters and
multiple properties of LB-PBF parts with the same ML
algorithms. One advantage of ML surrogate models is their
data-driven nature. They bypass the physics modeling, and
instead project the input predictors (i.e., process parame-
ters) to the output responses (i.e., properties) in a data-driven
manner. As a convenient practice, multiple properties can be
modeled simultaneously by the same ML algorithms from
the same set of process parameters but with different model
coefficients.

Interpretable ML models are widely used here. For
instance, Ponticelli et al. (2020) Investigated the impacts on
ultimate tensile strength, hardness, and roughness of LB-
PBF AlSi10Mg specimens from process parameters (i.e.,
volumetric energy density and building orientation) by using
optimal fuzzy regression.The fuzzy approach represented the
optimal “imprecise” description of the relation between the
parameters and the resulting quality. The model was trained
by 30 specimens from a multi-level factorial design. The
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Fig. 10 Structure of the artificial neural network with fuzzy logic for
a the “process-based” model and b the “property-based” model. Actual
and predicted fatigue lives (load cycles) of the process-based model

c and the property-based model (d). Dotted lines represent a factor of
two on line (Zhang et al., 2019)

results were in close agreement with the experimental find-
ings that volumetric energy density had a major influence
only on the ultimate tensile strength, while interaction with
the building orientation and the building orientation itself
strongly affected the hardness and the roughness.

Hertlein et al. (2020) related four LB-PBF process param-
eters (laser power, scan speed, hatch spacing, and layer
thickness) to five part quality characteristics (density, hard-
ness, top layer surface roughness, ultimate tensile strength in
the build direction and perpendicular to the build direction)
of 316L stainless steel parts by using a Bayesian network, as
shown in Fig. 11. This model was trained by 344 experimen-
tal data points mined from many publications. Based on the
five quality characteristics, the predicted mean of hardness
was within 0.41 standard deviation of the true value.

Conventional ML can model the complex process-
property relationshipswithmore flexibility than interpretable
ML. For instance, Marmarelis & Ghanem (2020) inferred
the dependence between LB-PBF process parameters (hatch
width, laser speed, and power) and part properties (ulti-
mate strength, yield strength, and elongation) of LB-PBF
AlSi10Mg specimens by a novel adaptation of diffusion
maps on an approximated Riemannian manifold. This model
solved the curse of dimensionality in the manifold, and was
trained with a small number of specimens (51). It allowed
cost-effective prediction and optimization for the LB-PBF
part properties based on process parameters with 65–70%
certainty. To improve the interpretability with the first prin-
ciples, the authors identified an efficient frontier of the
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Fig. 11 a The final Bayesian network related four LB-PBF process
parameters (laser power, scan speed, hatch spacing, and layer thickness)
to five part quality characteristics (density, hardness, top layer surface

roughness, ultimate tensile strength in the build direction and perpen-
dicular to the build direction) of 316L stainless steel parts; b the feasible
operating region of laser speed and power, shown in gray (Hertlein et al.,
2020)

expectations of the three properties with respect to the pro-
cess parameters.

By using GP, Yan et al. (2018) predicted mechanical prop-
erties (i.e., oxide precipitation, η precipitation strengthening,
solid solution strengthening, and tensile yield strength)
of LB-PBF specimens rapidly from material composition
and processing parameters (cooling rate, aging tempera-
ture, aging time) of LB-PBF. Four GP-based models were
developed from 200 simulated data points. They provided
high-accuracy prediction (with errors ~ 0.23%) and dra-
matically reduced the prediction time from ~ 300 s (one
physics-based mechanistic simulation) to a fraction of a sec-
ond.

Sanchez et al. (2021) applied a variety of ML techniques
(such as Ridge, LASSO, RF, Gradient boosted tree, SVR,

DNN) to understand the effect of L-PBF process parame-
ters on the creep rate of additively built nickel-based super
alloy 718 and to predict the creep rate of the material from
the process parameters and geometrical material descrip-
tors extracted from optical microscope porosity images. The
creep rate was accurately predicted with a percentage error
of 1.40% in the best case, and the most important material
descriptors were found to be part density, number of pores,
build orientation and scan strategy.

Moreover, an ensemble model is used to increase the pre-
diction accuracy for multiple LB-PBF part properties. For
instance, Li et al. (2020) proposed an adaptive hybrid ensem-
ble of three ML algorithms (kriging, radial basis function
(RBF), and support vector regression (SVR)) to predict the
powder utilization rate, the energy consumption, and the ten-
sile strength of the as-built LB-PBF 316L stainless steel
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specimens from the process parameters (i.e., laser power,
layer thickness, scanning speed). The training data for these
algorithms were 16 experiments from a Taguchi design, and
the outputs from these threemodels on theLB-PBF responses
were aggregated according to the local weights as the output
of the proposed ensemble. The ensemble model improved
the prediction accuracy of stand-alone algorithms by at least
20%.

ML in structure–property relationship

The structure–property relationship is also of great inter-
est to understand the underlying physics of LB-PBF. ML
surrogate models have been used to predict LB-PBF part
properties, such as tensile strength, yield strength, with
microstructure data, as in Table 4. Since the microstruc-
ture data (either captured by scanning electron microscopy
(SEM), X-ray computed tomography (CT), or simulated) are
two-dimensional or three-dimensional, there are two unique
aspects for ML applications in structure–property relation-
ship modeling:

(a) Data preprocessing and feature extraction by ML or
by domain expertise are required before modeling.
The interpretability of the ML surrogate model would
depend on the extracted features.

(b) While images or 3-D structure data can be conveniently
fed to deep ML algorithms, the interpretability of deep
ML is challenging. In contrast, interpretableMLmodels
with features designed from domain knowledge will be
easy to interpret.

Kusano et al. (2020) predicted the tensile properties of
heat-treated LB-PBFTi-6Al-4V specimens frommicrostruc-
tures usingmultiple linear regression.A total of 48 specimens
with 16 heat treatments were built, and their microstructures
were captured by SEM(ScanningElectronMicroscopy). The
microstructural features were quantitatively extracted from
the images by applying a random forest algorithm and image
analysis techniques. They were then used in multiple linear
regression analysis, together with defect-characterizing fea-
tures fromX-ray CT, to predict tensile properties. The results
showed that the tensile property of LB-PBF Ti-6Al-4V alloy
was strongly and intricately dependent on the microstruc-
ture (~ 0.82 correlation). However, since the microstructural
features were extracted by random forest, it was difficult to
further investigate how the microstructure affects the tensile
properties.

Miyazaki et al. (Miyazaki et al., 2019) investigated the
effects of heat treatments on mechanical properties (hard-
ness) of LB-PBF Ti-6Al-4V samples from their microstruc-
tures. Nine different heat treatments were applied to LB-PBF
Ti-6Al-4V samples, and the α particles in themicrostructures

were segmented by image processing and classified by ran-
dom forest. It was found the distance between α particles
gradually increased with heat treatment temperature, and the
hardness tended to increase with the α particle width, area
fraction, and nearest neighbor distances.

Herriott & Spear (2020) predicted yield strength of LB-
PBF 316L stainless steel parts from a simulated microstruc-
tural dataset of ~ 7700 data points by applying ridge
regression, gradient boosting, and convolutional neural net-
work (CNN) based on VGGNet architecture. Morphological
and crystallographic features were extracted from the simu-
latedmicrostructural dataset as per-voxel or per-grain values.
They served as the inputs for the ridge regression and gradient
boostingmodels,while theCNNwas trainedwith a 3D image
of the microstructure (in Fig. 12). The computational effi-
ciency for training the data-driven models was manageable
(much less than the data simulation); for instance, (gradient
boosting and ridge regression required ~ 3 min, CNN model
required ~ 99 s per epoch). Once trained, each model pre-
dicted the yield strength in less than two seconds with high
accuracy (R2 > 70%,RMSE~20MPa). Ridge regressionwas
much more interpretable than gradient boosting and CNN.

Moreover, the manufacturability of an LB-PBF part can
be assessed from its structure by using ML. For instance,
Guo et al. (2020) proposed semi-supervised deep learning
algorithms to assess the manufacturability of a metal cellu-
lar structure from its 3D CAD models. The proposed auto
encoder-generative adversarial network (AE-GAN) clas-
sification model was built on deep convolutional GAN
(DCGAN), and was trained by 50 randomly generated cellu-
lar structures in a semi-supervised setting with both labeled
and unlabeled real structures. The proposed method can
achieve ~ 80% accuracy in predicting the manufacturability
of metal cellular structures. Mycroft et al. (2020) detailed
a framework for predicting the printability of small-scale
geometric features in AM by using machine learning (i.e.,
SVM, KNN, and random forest) to correlate 36 local geom-
etry descriptors and printability.

Discussion and opportunities

With the rapid evolution of ML, growing deployment of LB-
PBF, and exploding amount of sensor data, the integration
of ML on LB-PBF as a tool for process and performance
optimization has great traction in both academia and indus-
try. This review has summarized different ML algorithms
applied in LB-PBF to model the PSP relationships for pro-
cess and performance optimization, as in Table 5. There are
still opportunities for us to further promote applying ML to
AM and fully unleash its potentials.
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Table 4 ML applications to model and utilize structure—property relationship in LB-PBF

Materials Input Output Models Categories Data Refs

Ti-6Al-4V Microstructure Tensile strength Multiple linear
regression,
random forest

Interpretable ML,
Conventional ML

Experiment Kusano et al.,
(2020)

Ti-6Al-4V Microstructure Hardness Random forest Conventional ML Experiment Miyazaki et al.,
(2019)

316L SS Microstructure Yield strength Ridge regression,
gradient boosting,
CNN

Conventional ML,
Deep ML

Simulation Herriott & Spear,
(2020)

Cellular
structure

Manufacturability Generative
adversarial
network

Deep ML Simulation Guo et al., (2020)

Ti-6Al-4V Geometry
descriptors

Printability Random forest,
SVM, KNN

Conventional ML Experiment Mycroft et al.,
(2020)

Fig. 12 Architecture of the 3D CNN based on VGGNet. It is trained
with a 3D image of the microstructure to predict the yield strength of
LB-PBF 316L stainless steel parts. The concatenation layer is optional

and is only used when the load direction vector is included (Herriott &
Spear, 2020)

Interpretability

To promote ML applications in LB-PBF, the interpretability
of ML is strongly desired. Interpretability is a domain-
specific notion. Not only can it help better understand model
results, but also help to discover knowledge in LB-PBF.

From Table 5, it is noticed that conventional ML has been
applied in process and performance optimization twice as
much as interpretable ML and deep ML combined. Com-
pared to interpretable ML models that can be interpreted
conveniently to understand the process, conventional ML
and deepMLconstitute black-boxmodels, having difficulties
quantitatively interpreting the results. To explore the power
of ML in discovering new knowledge and insights, inter-
pretation with additional steps is needed for complex models
from conventionalML and deepML, such asmodel-agnostic
methods, sensitivity analysis.

Currently, there aremany research initiatives in increasing
the interpretability ofML. For instance, DARPA launched its
Explainable Artificial Intelligence (XAI) program in 2017
to develop new techniques capable of making intelligent
systems explainable and delivering toolkits for defense or
commercial applications (Gunning &Aha, 2019). NIST also

initiates an Explainable AI workshop to discuss the princi-
ples of ExplainableAI (Phillips et al., 2020). These initiatives
indicate an irreversible trend to incorporate ML and AI
into manufacturing and utilize these data-driven methods to
explore the fundamental physics phenomena in manufactur-
ing.

Standardization

Process and performance optimization in LB-PBF by ML is
an interdisciplinary research area. To increase the effective-
ness of ML applications in LB-PBF, deep integration and
collaboration from various disciplines (such as materials sci-
ence, mechanical engineering, ML) are needed. It requires
both LB-PBF process expertise and strong ML knowledge
to formulate a reasonable data-driven application with a suit-
able model due to the complexity of physics in LB-PBF.

However, current ML in LB-PBF is biased by the exper-
tise of the practitioners, and is difficult to generate accurate
and trustful integration. Some practitioners consider ML as
off-the-shelf tools and miss the careful model tuning and
hyperparameters selection; others lack adequate LB-PBF
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Table 5 ML applications in LB-PBF. The most popular category is conventional ML, and the most used methods are GP and ANN in conventional
ML and linear regression in interpretable ML

Categories Methods Parameter—Signatures Process—Structure Process—Property Structure–Property Total

Interpretable
ML
(24)

Linear
regression

3 3 7 1 14

Ridge
regression

2 1 1 4

Decision tree 2 2

Bayesian
network

1 1 2 4

Conventional
ML
(59)

Random forest 3 2 3 1 9

Support vector
machine

3 2 4 1 10

Kernel
regression

3 3 1 7

Gaussian
process

8 3 4 15

Artificial
neural
network

1 6 6 13

Gradient boost 1 1 2

K-means
clustering

1 2 3

Deep ML
(6)

Autoencoder 1 1

Convolutional
neural
network

1 1 1 1 4

Generative
adversarial
network

1 1

The numbers in bold indicate the most popular ML methods in AM (i.e., GP, ANN and linear regression)

domain knowledge, and blindly apply ML without proper
process interpretation and insights.

Therefore, standardization inML applications in LB-PBF
can facilitate practitioners to apply ML in their LB-PBF pro-
cesses. Despite the differences in manufacturers, the same
physics of LB-PBF could lead to potential standardization in
sensing, data, feature extraction, simulation,model selection,
and interpretation. Furthermore, one of the difficulties aris-
ing from ML algorithms involves tuning hyperparameters,
developing standard parameters, or a standard method for
tuning them (instead of the usual trial-and-error approach),
which could lead to better ML models becoming industry
standards. The standardization can help promote a systematic
and reliable integration of ML in process and performance
optimization in LB-PBF and advance the research within the
community.

Collaborative platform

The limited amount of data for ML applications in LB-PBF
hinders accurate results. Since ML is data-driven in nature,
the reliability of its results is impacted by the quality and
quantity of the data. However, due to the cost and time spent
on each build and measurement, the available data for ML
in LB-PBF in each study is not abundant. The simulated
data is also often of high computation. Furthermore, using
insufficient data to draw conclusions may lead to erroneous
deductions. This is a particularly high risk when ML models
are used by non-experts, unfamiliar with the pitfalls of issues
such as over-fitting or failing to do cross-validation.

To fully exert the power of ML in LB-PBF applications, a
collaborative platform for data sharing is desired. From the
literature review, it is noticed that several research targets the
same areas (e.g., melt pool geometry modeling from process
parameters). If the experiment data from each study can be
shared on a collaborative platform with necessary process
settings in a standardized format, not only the practitioners

123



Journal of Intelligent Manufacturing

from both academia and industry can benefit from them for
new applications, but also the researchers have sufficient data
to verify their studies and carry out new research (Liu et al.,
2021). Currently, NIST has built the Additive Manufactur-
ing Materials Database (AMMD) from their experiments.
Encouraging researchers to upload their experimental data
in a standard format should be an efficient way to achieve the
scale effect in the future.

Conclusions

The studies of machine learning (ML) for process and per-
formance optimization in laser beam powder bed fusion
(LB-PBF) in the recent decade are reviewed in this paper.
These studies aimed to optimize process parameters and
product properties/performance by leveraging and utiliz-
ing the process-structure–property relationships, modeled
or approximated by a variety of ML algorithms or their
ensemble. To facilitate a better understanding of the ML
applications in LB-PBF, we proposed a new way to catego-
rize the ML algorithms, i.e., interpretable ML, conventional
ML, and deep ML on the interpretability and accuracy. For
instance, interpretable ML is linear or rule-based, and is ben-
eficial to learn or understand the physics in LB-PBF, while
deep ML can model nonlinear relationships with high accu-
racy but low interpretability. This way is particularly useful
for practitioners to select the ML algorithms according to
their needs.

During the review, we carefully examined the three cat-
egories of ML in LB-PBF in their applications of modeling
or approximating the relationships between process param-
eters and process signatures, between process and structure,
between process and properties/performance, between struc-
ture and properties/performance. The review can serve as a
comprehensive reference for the readers to know what the
current ML applications are in the areas they want to investi-
gate. The data used in the applications (from the experiment,
simulation, or both) and feature extraction (manually or auto-
matically) were also reviewed.

ML has become a useful tool to understand the LB-PBF
process and predict product properties with different mea-
surement data and simulations. In the future, enhancing the
interpretability of ML, standardizing a systemic procedure
for ML, and developing a collaborative platform to share
data and findings will be critical to promote the integration
of ML in LB-PBF applications on a large scale.
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